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Abstract—Approximate integral techniques are employed to investigate the effects of small buoyant
forces on laminar flow over semi-infinite horizontal and vertical flat plates. Corrections to local shear
stress and heat flux are presented for all Prandtl numbers from Pr = 0-01 to Pr = 1000, and are seen to
be in good agreement with previously computed “exact” values for Pr > 0-1. The effect of buoyancy
on the stability of the boundary layer is also computed.
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NOMENCLATURE

coordinate along plate measured
positively from leading edge
[ft];

coordinate normal to plate meas-
ured positively away from plate
[ft];

fluid velocity components in x,
y direction respectively [ft/s];
fluid temperature [°R];

free stream velocity [ft/s];

free stream temperature [°R];
volumetric coefficient of expan-
sion [1/°R];

gravitational acceleration [ft/s?];
kinematic viscosity {ft?/s];
thermal diffusivity [ft/s];
mechanical boundary-layer
thickness [ft];

thermal boundary-layer thick-
ness [ft];

dimensionless coordinate = y/8;
dimensionless coordinate
y[8z;

dimensionless components of
velocity profile;
velocity profile
(dimensionless);
dimensionless temperature pro-
file;

dimensionless ratio of boundary-
layer thicknesses = 8/ér;

shape factor
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Pr,
Grz,

Rey,

€,

&1, b2, 3, Pa,
Rec,

Reco,

dimensionless boundary-layer

. Su
thickness = Tw ;

dimensionless x coordinate

XU
T
14

Prandtl number = v/a;

Grashof number based on x =

8B(Tw — T)x3
T

Reynolds number based on x =

XU

v

_x*.

- 3

dimensionless measure of buoy-
ancy effect = Gry/Re3;
functions defined in equations
(9), (10), (13) and (14);
functions defined in equations
(15) through (18);

Reynolds number based on
distance from leading edge to
point of instability;

Reynolds number based on
distance trom leading edge to
point of instability with no
buoyancy.
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INTRODUCTION

ALTHOUGH the problems of free and forced con-
vective heat transfer have been extensively
treated separately, cases in which the two effects
appear simultaneously have received relatively
little analytical treatment. There are only a few
recent works on this subject. Analyses for small
buoyancy effects in laminar forced convective
flow over a heated semi-infinite flat plate have
been presented by Sparrow and Gregg [1] for
a vertical plate, and by Mori [2] for a horizontal
plate. Sparrow and Minkowycz [3] also con-
sidered the horizontal plate, pointing out an
error of sign in Mori’s work. The approach used
by these authors has been to express the stream
funtion ¥(x, y) in terms of the usual Blasius
similarity variable » or Pohlhausen similarity
variable £, then expand ¢ in a power series of a
suitable small parameter about its value with
no buoyancy effects present. The resulting differ-
ential equations for the higher order corrections
to the stream function have been integrated
numerically on an electronic computer for a few
specific values of the Prandtl number,

In this short note the problems stated above
are treated using the von Karmdn-Pohlhausen
integral technique. This technique has also been
used by Gill and del Casal [4], and Acrivos [5].
Gill and del Casal formulated the approximate
equations for a horizontal flat plate, but were
not able to obtain any solutions. Acrivos derived
the equations for the vertical flat plate and
reported numerical results by using an electronic
computer. Here it is found that for small buoy-
ancy, closed-form solutions can be obtained
which readily yield shear stress and heat flux
corrections for any value of Prandtl number.
Some observations on the stability of the laminar
boundary layer are also made.

ANALYSIS

A. Horizontal plate

The equations of conservation of mass,
momentum and energy for this case are given
in [3] as

ou ov
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In formulating these equations the usual
boundary-layer approximations were made and
all fluid properties were considered constant
except the density, which was allowed to vary
with temperature. A further approximation,
common to treatments of buoyancy affected
flows, restricts the effect of variable density to
the formation of a “buoyant force” term, which
is the first term appearing on the right-hand side
of equation (2).

Integrating with respect to y from zero to
infinity, and incorporating equation (1) into
equations (2) and (3), the integral forms of the
momentum and energy equations become

d oou u
2 — _— — Py
e dxjum (1 Hoo) dy
4]

~gﬁ%f(jedy)dy+ (5

g

@

and

where 8 = T — Tw/Tw — Tw.

Following Pohlhausen, let us assume velocity
and temperature profiles of the form

A
;g; =@ =27 + 99+ _g) (=7 =

F(n) + AG(n) (6a)
and
6—1— 29, + 23 —nh—1— Fny) (6b)

for 7 and 7, less than unity, and ufuw = 1,
# = 0 for » and 7, greater than unity respec-
tively, The quantities 5 and 7, are given by
y/8(x) and y/8x(x), where 8 and 87 are the extent
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of the hypothetical mechanical and thermal
boundary-layer thicknesses respectively. The
expressions (6a) and (6b) conform to the normal
Pohlhausen restrictions (Schlichting [6]), except
that A(x) must be chosen to satisfy equation
(2) at y = 0. This gives
Tw— Tw) . doér
) = T 52 97 [t g

0
3 8w — Tw) , dbr
10 VU dx '

If we introduce the dimensionless quantities
{ = 8/8p, 8% = uxdfv, x* = uxx/v and sub-
stitute (6a) and (6b) into (4) and (5), we then
obtain the following pair of coupled non-linear
ordinary differential equations:

37 _ds* 3 d d
8% " * _ *3 _ * .
315 0" @ T 5,450 < ik [5 & @@ )]
1 d dgs*\2
28% *5 —
100,800 <" ax* [3 (dx*)] =
aess (1 4
*2 e —
24 S (20 30 C)’ M

d 3 d(gs*
15 g {00 [0+ g v S0 o] |

dx*

where
O O
- ud, " Red
and Hi({), H2({) are known polynomials of ¢

(cf. Dienemann [7]). These polynomials are
computed by performing the integrals

Hy({) = {1) F({n)0(ng) dn,  for £ <1
lfF(inT)H(nT) dn, for {>1

and
Hol) = {1 G(nB(ng)dn,  for L <1
1fG(CvT)@(nT) dn, for {>1.
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The quantity e is a measure of the ratio of buoy-
ant forces to inertial forces. Equations similar
to these were given in [4], however no solutions
were obtained. For small buoyancy effects we
assume that the solutions to (7) and (8) can be
expressed as a power series in e as follows:

8% = 8 4 8%+ ...

{=lo+ elit....

Substituting these expressions for 8* and ¢ into
(7) and (8) and collecting like powers of e results
in an eclementary set of uncoupled ordinary
differential equations which can be integrated
immediately. The zero order solutions are

17\ 172
8 =2 (%) x*, Lo = const. = Lo(Pr).

The dependence of {p on Pr may be determined
from [7]. The first order solutions are

8 = (1:007 o — 2207 3) 8tx* =

a(Pr) 8¢ (9)
0-352
[—IT a1 + (59:59) £3 Hs ({o)
N [R5 fox*!
2 + 222t
= ag(Pr) Lox**  (10)
where
2 9 1
h(CO)=i‘5—1——0§(2,+4—5§3, {<1
31 41 61 51
h(Zo) = 0z " BaTHE )R8 {>1L

In these solutions we have imposed the initial
conditions 83(0) = 83(0) = 0 and {o(0) = const.,
£1(0) = 0. Since 3* and { are only intermediate
quantities in computing shear stress and heat
flux, they are left in this form at this point.

B. Vertical plate

The governing equations for this case are
given in [1]. Integrating these with respect to y
as in case 4 we obtain
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d fu u
2 —_— _—— =
Hen dx_[uoo (1 uoo) d
0

— gB(T — T“’)Jgdy t (2—;)0

d 0Ou o
Nwdxj&wedy_ —a(9y>0
0

As in case 4 we assume

and

ZZ; = F(n) + AG(n), 8 =1 — F(3,),

but now
= 88w — T=) 82,

VU

A

The resulting differential equations for 6* and ¢
are

(37 1 5

J *®2 __
315 315 € 9,072

do*
€2 3*4) S§* e —

2 {1 3
2 4 eb* (6*102’:) (1)
and

d 2
0 o {58* [Hl(c) + e8*2H2(z)J} = (1)

Similar equations have also been considered in
[5], and were integrated numerically for any
amount of buoyancy present.

For small buoyancy effects we can obtain
solutions by expanding é* and { as in case A.
Solving the resulting equations we obtain

15\1/2
8 =2 (%7) x*, o = const. = {o(Pr)

as for the horizontal plate, and
87 = (0-940 — 1-277 Zo) 83x* = ag(Pr) Syx*,

(3)
[0';,70 a3 + 102-16 L2H(lo)
bi=—""T5am0 box* =
%5 + 3|
as(PPlox*.  (14)
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As in the case 4, we have made the restrictions
35(0) = 87(0) = 0, and £o(0) = const., £1(0) = 0.

C. Effect on stability of boundary layer

As was pointed out in [3], buoyancy effects
induce longitudinal pressure gradients on a flat
plate in an otherwise uniform flow. If the buoy-
ancy effect is considered to manifest itself only
in an induced pressure gradient and thereby
affect the velocity profile, Schlichting’s procedure
for computing transition on airfoils [8] can be
summarily adopted to compute the effect buoy-
ancy has on the point of instability on a flat plate.
From [8] we find that for small values of the
quantity A, the critical Reynolds number is given
by Re = 645 exp (0-61), so that the point of
instability is reached when the Reynolds number
based on boundary-layer displacement thickness
reaches this critical value. This criterion yields

1 (1 — F)dy — A [G dy] = 645 exp (06 ).
o 0

For small values of A the exponential is expanded
in powers of e. Inserting the proper expressions
for 6* and A(x), we obtain a homogeneous poly-
nomial in x*. The roots determine the point of
instability and its dependence on the parameters
(e, Pr). Letting Re; be the Reynolds number
based on distance from the leading edge at the
point of instability, and Re., its value with no
buoyance we find

Re,

Ro, =1+ {738(3-07 Lo — 1)}

for the horizontal plate and

gﬁ — 1 + € {272,000035 — a)}

for the vertical plate.

RESULTS

Shear stress
The shear stress on the plate is given by

TS (1 + 1‘2)‘

For the horizontal plate, the ratio of the shear
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stress to its value with no buoyancy 7/7¢ is given
by

B o8y d8y 8
*/T°—1+€{7¢o—d—ﬁ—s‘;}“

O 4Pr)  (15)

1+ ex®y(Pr) =1+ R

and for the vertical plate by

8
T/lrg=1- ¢ [13 ~—a3] =1+ ex*¢a(Pr) =

L+ 9% gien. (16

The quantities ¢; and ¢3 are shown in Fig. 1.
The corresponding point values from [1] and [3]
are shown for comparison.

Heat flux
The heat flux is given by
~ 2k(Tw — Tw)
==

For the horizontal plate, the ratio of the heat
flux to its value with no buoyancy g/qo is given by

_ SO
CI/QO—1+6{~CO 8;}_

G
14+ extgo(Pr) = 1 + R—Jg’,‘-z $o(Pr)  (17)

and likewise for the vertical plate

a/go =14+ ex*[ — as — aq] =
G
1+ ex*da(Pr) = 1 + }é’; $a(Pr). (18)
The quantities ¢2 and ¢4 are also shown in Fig. 1.

Effect on boundary-layer stability

The relationship between Re. and Re., for
the Prandtl number = 0-7 and 10 are shown in
Fig. 2. It can be seen that high Prandtl number
fluids are least affected by buoyancy although the
actual variation with Pr is quite small in case B.
For cases in which e is positive (upper surface of
heated horizontal plate, lower surface of cooled
horizontal plate, upflow on a heated vertical
plate, downflow on a cooled vertical plate) the
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boundary layer becomes more stable while for
negative e it is less stable.

As a concrete example, consider the case of air
at 80°F flowing over a plate with a velocity of
5 ft/s. For a horizontal plate, the Reynolds
number at the point of instability is increased by
a factor of 1-27 for a temperature difference
Tw — Tw = 230 degF (e = 10-%), while for a
vertical plate a temperature difference of only
2-3 degF (e = 10-7) is needed to increase it by a
factor of 1-96.

DISCUSSION

From Fig. 1 it can be seen that the approxi-
mate integral techniques yield an estimation of
buoyancy effects on a laminar boundary layer
that are in good agreement with values calculated
from the exact equations by a digital computer,
except for extremely low values of Prandtl
number. For very low values of Pr, the thermal
boundary layer becomes much larger than the
mechanical boundary layer. Since the pressure
at a point in the mechanical boundary layer is
computed by integrating S(T" — Tw) up to the
edge of the thermal layer, for low Pr the magni-
tude of the computed buoyancy effect is very
sensitive to the assumed profile. On the other
hand for high Pr, the thermal layer is much
smaller than the mechanical layer, and one
would expect the effect to be much less sensitive
to the assumed profiles. The results shown in
Fig. 1 may then be used with reasonable con-
fidence for all values of Pr greater than 0-1.
Strictly speaking, to make the perturbation
technique of solution valid, values of ¢ should
be limited to e < 10-5 for the horizontal plate,
and e < 10-7 for the vertical plate.

In analyzing the results in Fig. 2, it must be
remembered that buoyancy effects have been
considered as influencing the velocity profiles
only, and the subsequent stability calculations
include only the effect of changes in these pro-
files. An exact analysis of the buoyancy effect
would have to consider the effect of stratification
of density in the boundary layer, and the subse-
quent momentum and energy disturbance equa-
tions would have to be considered simultaneously.
The results shown can be considered only as
engineering approximations of the true magni-
tude of effect involved.
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Fic. 1. The functions ¢1, ¢, $3, $a, with which the corrections to shear stress and heat flux
may be computed, versus Prandtl number Pr. (4) horizontal plate. (B) vertical plate.
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FiG. 2. The Reynolds number at the point of instability versus the m.asure of buoyancy
¢ = Grz/Re;3. (A4) horizontal plate. (B) vertical plate.



LAMINAR BOUNDARY-LAYER FLOWS WITH SMALL BUOYANCY EFFECTS 295

ACKNOWLEDGEMENT

The author is deeply indebted to Professors R. H.
Sabersky and A. J. Acosta of the California Institute of
Technology for their helpful criticisms of this work.

This paper is based on work being carried out under
N.S.F. Grant 14071, and the author greatly appreciates
this support by the National Science Foundation.

REFERENCES

1. E. M. Sparrow and J. C. GREGG, Buoyancy effects in
forced convection flow and heat transfer,J. Appl. Mech.
26, Trans. Amer. Soc. Mech. Engrs 81, Series E, 133—
134 (1959).

2. Y. Moriy, Buoyancy effects in forced laminar con-
vection flow over a horizontal flat plate, J. Heat Trans-
fer, C83, 479482 (1961).

3. E. M. Sparrow and W. J. MiNnkowycz, Buoyancy

effects on horizontal boundary layer flow and heat
transfer, Int. J. Heat Mass Transfer 5, 505-511 (1962).

. W. N. GiLL and E. DeL CasAL, A theoretical investi-

gation of natural convection effects in forced hori-
zontal flows, J. Amer. Inst. Chem. Engrs 8, <'3-518
(1962).

. A. Acrivos, Combined laminar free and fi rced con-

vection heat transfer in external flows, J.
Chem. Engrs 4, 285-289 (1958).

mer. Inst,

. H. SCHLICHTING, Boundary Layer Theor) “nd ed.,

p. 243. McGraw-Hill, New York (1960).

. W. DiENEMANN, Berechnung des Wiarmeiiberganges an

laminar umstromten Korpern mit konstanter und
ortsverdnderlicher Wandtemperatur, Thesis, Braun-
schweig (1951), Z. Angew. Math. Mech. 33, 89-109
(1953).

. C. C. Lin, Turbulent flows and heat transfer, High

Speed Aerodynamics and Jet Propulsion Series. vol. 5,
p. 32. Princeton University Press, New Jersey (1959).

Résumé—Des techniques intégrales approchées sont employées pour étudier les effets de forces

d’Archiméde faibles sur ’écoulement laminaire sur des plaques planes semi-infinies horizontales et

verticales. Des corrections a la contrainte de cisaillement et au flux de chaleur locaux sont présentés

pour tous les nombres de Prandtl allant de Pr = 0,01 a Pr = 1000, et I’on voit que I"accord est bon

avec des valeurs “exactes” pour Pr = 0,1 calculées auparavant. L’effet des forces d’Archimeéde sur la
stabilité de la couche limite est aussi calculé.

Zusammenfassung—Um den Einfluss geringer Auftriebskrifte auf die laminare Stromung iiber einer

halbunendlichen waagerechten und senkrechten ebenen Platte zu untersuchen, wurde eine Nédherungs-

Integraltechnik verwendet. Fiir alle Prandtlzahlen von Pr = 0,01 bis Pr = 1000 werden Korrekturen

fiir die lokale Schubspannung und die 6rtliche Wirmestromdichte angegeben. Sie weisen eine gute

Ubereinstimmung mit frither errechneten “exakten’ Werten fiir Pr> 0,1 auf. Der Einfluss des Auftriebs
auf die Stabilitdt der Grenzschicht wird ebenfalls berechnet.

Annotamua—IIpubinKeHHEe HHTErPANbHEE METOSH MCHOJNB3YIOTCA AJA HCCIeSOBAHMA
BIIMSHNA MAJBIX CHJI IUIABYYeCTH HA JAMUHAPHHI IHOTOK HA MOJyGeCKOHEYHO! rOpMBOHTAI-
PHOM M BePTHKANBHOH INIOCKON IIIacTMHAX. JIAIOTCA MONPABKM HA JOKAJIHLHOE HANPHKEHHE
TPeHUA ¥ INIOTHOCTD TEeIIOBOTO MOTOKA 471 Beex yucen Ipargrasa ot Pr=0,101 no Pr =1000.
DTH DONPABKU XOPOINO COrTACYIOTCA C paHee BHYMUCICHHHIMM (TOYHEIMU» SHAYCHUAMM A
Pr > 0,1. Tamwxe onpefesneH0 BIMAHNE INIABYYECTH HA CTAGHILHOCTD IOTPAHUYHOTO CJIOHA.



