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LAMINAR BOUNDARY-LAYER FLOWS 
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Abstract-Approximate integral techniques are employed to investigate the effects of small buoyant 
forces on laminar flow over semi-infinite horizontal and vertical flat plates. Corrections to local shear 
stress and heat flux are presented for all Prandtl numbers from Pr = 0.01 to Pr = 1000, and are seen to 
be in good agreement with previously computed “exact” values for Pr > 0.1. The effect of buoyancy 

on the stability of the boundary layer is also computed. 

NOMENCLATURE 

coordinate along plate measured 
positively from leading edge 
ml ; 
coordinate normal to plate meas- 
ured positively away from plate 
VI ; 
fluid velocity components in x, 
y direction respectively [ft/s]; 
fluid temperature [“RI; 
free stream velocity [ft/s]; 
free stream temperature [OR] ; 
volumetric coefficient of expan- 
sion [l/OR]; 
gravitational acceleration [ft/s2]; 
kinematic viscosity ]ft2/s]; 
thermal diffusivity [ft/s]; 
mechanical boundary-layer 
thickness [ft] ; 
thermal boundary-layer thick- 
ness [ft] ; 
dimensionless coordinate = y/S; 
dimensionless coordinate = 
Y/6T; 
dimensionless components of 
velocity profile; 
velocity profile shape factor 
(dimensionless); 
dimensionless temperature pro- 
file ; 
dimensionless ratio of boundary- 
layer thicknesses = 8/8T; 

a* 9 

x*, 

pr, 
GTE, 

I&, 

E, 

al, a2, a3, a4, 

$1752, (637 $4, 

Rep, 

Reco, 

dimensionless boundary-layer 

6UCC 
thickness = _ ; 

V 

dimensionless x coordinate = 

X&C __* 
v ’ 

Prandtl number = v/a; 
Grashof number based on x = 

vs ’ 

Reynolds number based on x = 

xum - zzx *. 
> 

V 

dimensionless measure of buoy- 
ancy effect = Gr,lRez ; 
functions defined in equations 
(9), (lo), (13) and (14); 
functions defined in equations 
(15) through (18); 
Reynolds number based on 
distance from leading edge to 
point of instability; 
Reynolds number based on 
distance from leading edge to 
point of instability with no 
buoyancy. 
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INTRODUCTION 
ALTHOUGH the problems of free and forced con- 
vective heat transfer have been extensively 
treated separately, cases in which the two effects 
appear simultaneously have received relatively 
little analytical treatment. There are only a few 
recent works on this subject. Analyses for small 
buoyancy effects in laminar forced convective 
flow over a heated semi-infinite flat plate have 
been presented by Sparrow and Gregg [l] for 
a vertical plate, and by Mori f2] for a horizontal 
plate. Sparrow and Minkowycz [3] also con- 
sidered the horizontal plate, pointing out an 
error of sign in Mori’s work. The approach used 
by these authors has been to express the stream 
funtion tft(x, y) in terms of the usual Blasius 
similarity variable 7 or Pohlhausen similarity 
variable 6, then expand $ in a power series of a 
suitable small parameter about its value with 
no buoyancy effects present. The resulting differ- 
ential equations for the higher order corrections 
to the stream function have been integrated 
numerically on an electronic computer for a few 
specific values of the Prandtl number. 

In this short note the problems stated above 
are treated using the von Karman-Pohlhausen 
integral technique. This technique has also been 
used by Gill and de1 Casal [4], and Acrivos [S]. 
Gill and de1 Casal formulated the approximate 
equations for a horizontal flat plate, but were 
not able to obtain any solutions. Acrivos derived 
the equations for the vertical flat plate and 
reported numerical results by using an electronic 
computer. Here it is found that for small buoy- 
ancy, closed-form solutions can be obtained 
which readily yield shear stress and heat flux 
corrections for any value of Prandtl number. 
Some observations on the stability of the laminar 
boundary layer are also made. 

ANALYSIS 
A. Horizontal plate 

The equations of conservation of mass, 
momentum and energy for this case are given 
in [3] as 

(1) 

10 

(T-T,)dy+v$ 

Y 

(2) 
8T aT ST 1, -- + u - zzz a ---. . 
ax ay ay2 (3) 

In formulating these equations the usual 
boundary-layer approximations were made and 
all fluid properties were considered constant 
except the density, which was allowed to vary 
with temperature. A further approximation, 
common to treatments of buoyancy affected 
flows, restricts the effect of variable density to 
the formation of a “buoyant force” term, which 
is the first term appearing on the right-hand side 
of equation (2). 

Integrating with respect to y from zero to 
infinity, and incorporating equation (1) into 
equations (2) and (3), the integral forms of the 
momentum and energy equations become 

and 

63 

ztm$ ;6dy= --a g- o, 
s 

al4 

0 
(5) 

, 
0 

where 8 = T - Tw/Tw - T,. 

Following Pohlhausen, let us assume velocity 
and temperature profiles of the form 

and 

0 = 1 - 2q, + 2?$ - ?$ = 1 - I;(r,) (6b) 

for q and Q, less than unity, and u/u~ = 1, 
9 = 0 for 17 and Q, greater than unity respec- 
tively. The quantities 7 and qT are given by 
y/S(x) and y/&(x), where 6 and BT are the extent 
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of the hypothetical mechanical and thermal The quantity E is a measure of the ratio of buoy- 
boundary-layer thicknesses respectively. The ant forces to inertial forces. Equations similar 
expressions (6a) and (6b) conform to the normal to these were given in [4], however no solutions 
Pohlhausen restrictions (Schlichting [q), except were obtained. For small buoyancy effects we 
that X(x) must be chosen to satisfy equation assume that the solutions to (7) and (8) can be 
(2) at y = 0. This gives expressed as a power series in E as follows: 

3 g/W, - Tco) 6. ds_T 
10 vu00 dx ’ 

If we introduce the dimensionless quantities 
5 = 6/&r, 6* = W&/V, x* = uoox/v and sub- 
stitute (6a) and (6b) into (4) and (5), we then 
obtain the following pair of coupled non-linear 
ordinary differential equations : 

2 + &*a d(@*) I 
dx* (&j$ (7) 

3 
K(5) + 1% l s 

*2 d(G*) 
dx* m3 I> 

where 

=;, (8) 

E = gN”~ - T&J Grz 
u”, =Re; 

and Hi({), Z&(3) are known polynomials of 5 
(cf. Dienemann [7]). These polynomials are 
computed by performing the integrals 

W5) = f WGG,) drl, for 1 < 1 

l~(i?,)W~,) d7, for 5 > 1 

and 

WC) = j WQ%,) drl, for 1 < 1 
0 

5 = 50 + 41-t- . . . . 

Substituting these expressions for 6* and 5 into 
(7) and (8) and collecting like powers of E results 
in an elementary set of uncoupled ordinary 
differential equations which can be integrated 
immediately. The zero order solutions are 

317 11s 
s;=2 -j5 ( 1 x*‘, 50 = const. = 50(h). 

The dependence of 50 on Pr may be determined 
from [7]. The first order solutions are 

8; = (l-007 50 - 2.207 5;) S;rx** = 

ul(Pr) a*$*’ (9) 

0.352 
pr al + (59.59) r: Hz (50) 

51 = - 
I 

lox 
*p 

+ 25: h(50) 1 = a2(Pr) [OX*& (10) 

where 

h(i3 = ; f - ;5 & + ; i5 - k. $, , 5 > 1. 
0 0 0 0 

In these solutions we have imposed the initial 
conditions 6,*(O) = 6:(O) = 0 and <o(O) = const., 
<l(O) = 0. Since 6* and 5 are only intermediate 
quantities in computing shear stress and heat 
flux, they are left in this form at this point. 

B. Vertical plate 
The governing equations for this case are 

given in [l]. Integrating these with respect to y 
as in case A we obtain 
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and 

As in case A we assume 

but now 

The resulting differential equations for 6* and 5 
are 

and 

HI(~) + l a*‘H2(5) 

Similar equations have also been considered in 
[5], and were integrated numerically for any 
amount of buoyancy present. 

For small buoyancy effects we can obtain 
solutions by expanding 6* and 5 as in case A. 

Solving the resulting equations we obtain 

( 315 1 1’2 
80*=2 37 x*~, 50 = const. = 5&V) 

as for the horizontal plate, and 

S; = (O-940 - 1.277 50) 6,*x* = ag(Pr) six*, 

(13) 

~3 + 102.16 5,2H&o) 
I __ 50x* = 

+ 35$V50) 
I 
a4(Pr)Sox*. (14) 

As in the case A, we have made the restrictions 
S:(O) = S:(O) = 0, and <o(O) = const., (r(O) = 0. 

C. Efect on stability of boundary layer 
As was pointed out in [3], buoyancy effects 

induce longitudinal pressure gradients on a flat 
plate in an otherwise uniform flow. If the buoy- 
ancy effect is considered to manifest itself on/y 
in an induced pressure gradient and thereby 
affect the velocity profile, Schlichting’s procedure 
for computing transition on airfoils [8] can be 
summarily adopted to compute the effect buoy- 
ancy has on the point of instability on a flat plate. 
From [8] we find that for small values of the 
quantity h, the critical Reynolds number is given 
by Re = 645 exp (0.6h), so that the point of 
instability is reached when the Reynolds number 
based on boundary-layer displacement thickness 
reaches this critical value. This criterion yields 

6” [ !(l - F) dy - X PG dv] = 645 exp (0.6 h). 
0 

For small values of h the exponential is expanded 
in powers of 6. Inserting the proper expressions 
for 6* and X(x), we obtain a homogeneous poly- 
nomial in x*. The roots determine the point of 
instability and its dependence on the parameters 
(E, Pr). Letting Ree be the Reynolds number 
based on distance from the leading edge at the 
point of instability, and Reco its value with no 
buoyance we find 

Re, 
~ = 1 + E {738(3*07 50 - a~)) 
Reco 

for the horizontal plate and 

Ret 
- = 1 + c {(272,000)(35 - a,,> 

Reco 

for the vertical plate. 

RESULTS 

Shear stress 
The shear stress on the plate is given by 

For the horizontal plate, the ratio of the shear 
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stress to its value with no buoyancy T/TO is given 

by 

T/TO = 1 + E 

(15) 

and for the vertical plate by 

The quantities $1 and $3 are shown in Fig. 1. 
The corresponding point values from [l] and [3] 
are shown for comparison. 

Heat jlux 
The heat flux is given by 

2k(Tw - Tm) 
q= __. 

CS 

For the horizontal plate, the ratio of the heat 
flux to its value with no buoyancy q/q0 is given by 

q/q0 = 1 + E{ -!p}_ 

1 + EX*t&(Pr) = 1 + Re5/2 Grx $2(Pr) (17) 

and likewise for the vertical plate 

q/q0 = 1 + fX*[ - a3 - a.41 = 

1 + Ex*l$4(Pr) = 1 + GgZ $4(h). (18) 

5 

The quantities 42 and $4 are also shown in Fig. 1. 

Effect on boundary-layer stability 
The relationship between Re, and Reeo for 

the Prandtl number = 0.7 and 10 are shown in 
Fig. 2. It can be seen that high Prandtl number 
fluids are least affected by buoyancy although the 
actual variation with Pr is quite small in case B. 
For cases in which E is positive (upper surface of 
heated horizontal plate, lower surface of cooled 
horizontal plate, upflow on a heated vertical 
plate, downflow on a cooled vertical plate) the 

boundary layer becomes more stable while for 
negative c it is less stable. 

As a concrete example, consider the case of air 
at 80°F flowing over a plate with a velocity of 
5 ft/s. For a horizontal plate, the Reynolds 
number at the point of instability is increased by 
a factor of 1.27 for a temperature difference 
Tw - T, = 230 degF (E = lo-s), while for a 
vertical plate a temperature difference of only 
2.3 degF (C = 10-7) is needed to increase it by a 
factor of 1.96. 

DISCUSSION 

From Fig. 1 it can be seen that the approxi- 
mate integral techniques yield an estimation of 
buoyancy effects on a laminar boundary layer 
that are in good agreement with values calculated 
from the exact equations by a digital computer, 
except for extremely low values of Prandtl 
number. For very low values of Pr, the thermal 
boundary layer becomes much larger than the 
mechanical boundary layer. Since the pressure 
at a point in the mechanical boundary layer is 
computed by integrating /3(T - Tm) up to the 
edge of the thermal layer, for low Pr the magni- 
tude of the computed buoyancy effect is very 
sensitive to the assumed profile. On the other 
hand for high Pr, the thermal layer is much 
smaller than the mechanical layer, and one 
would expect the effect to be much less sensitive 
to the assumed profiles. The results shown in 
Fig. 1 may then be used with reasonable con- 
fidence for all values of Pr greater than 0.1. 
Strictly speaking, to make the perturbation 
technique of solution valid, values of E should 
be limited to t < 10-s for the horizontal plate, 
and E < lo-7 for the vertical plate. 

In analyzing the results in Fig. 2, it must be 
remembered that buoyancy effects have been 
considered as influencing the velocity profiles 
only, and the subsequent stability calculations 
include only the effect of changes in these pro- 
files. An exact analysis of the buoyancy effect 
would have to consider the effect of stratification 
of density in the boundary layer, and the subse- 
quent momentum and energy disturbance equa- 
tions would have to be considered simultaneously. 
The results shown can be considered only as 
engineering approximations of the true magni- 
tude of effect involved. 
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FIG. 1. The functions 41, 42, $3, 44, with which the corrections to shear stress and heat flux 
may be computed, versus Prandtl number Pr. (A) horizontal plate. (R) vertical plate. 

#.O - 0.5 0 03 PO 

EX105 E x 107 
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FIG. 2. The Reynolds number at th: point of instability versus the m ssure of buoyancy 
F = Gr,/Re,3. (A) horizontal plate. (B) vertical plate. 
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R&urn&Des techniques inn&ales approchees sont employees pour dtudier les effets de forces 
d’Archiml?de faibles sur l’ecoulement laminaire sur des plaques planes semi-inntries horizontales et 
verticales. Des corrections a la contrainte de cisaillement et au flux de chaleur locaux sont present&s 
pour tous les nombres de Prandtl allant de Pr = 0,Ol a Pr = 1000, et l’on voit que l’accord est bon 
avec des valeurs “exactes” pour Pr = 0,l calculees auparavant. L’effet des forces d’Archimtde sur la 

stabilite de la couche limite est aussi calcule. 

Zusammenfaasung-Urn den Eintluss geringer Auftriebskrlfte auf die laminare Striimung iiber einer 
halbunendlichen waagerechten und senkrechten ebenen Platte zu untersuchen, wurde eine Nlherungs- 
Integraltechnik verwendet. Flir alle Prandtlzahlen von Pr = 0,Ol bis Pr = 1000 werden Korrekturen 
fiir die lokale Schubspannung und die Grtliche Warmestromdichte angegeben. Sie weisen eine gute 
Ubereinstimmung mit friiher errechneten “exakten” Werten fur Pr > 0,l auf. Der Einfluss des Auftriebs 

auf die Stabilitat der Grenzschicht wird ebenfalls berechnet. 

AmroTaqasr-IlpHBnHmeHHbte MHTerpaJIbHbIe MeTOAbI HCIIOJIb3YIOTCl-I @IFl HCCJE~OBaHiIa 

BJIPIRHHFI MaJlblX CElJl IIJKlByW2TH Ha HaMHHapHbIi nOTOK Ha nOJly6eCKOHeYHOfi rOpH30HTan- 
bHOti H BepTHKaHbHOH nJIOCKOt IIHaCTHHaX. AaIOTCH nOnpaBKH Ha JIOKaJtbHOe HanpHHteHHe 
TpeHMH H nBOTHOCTb TennOBOrO HOTOKa HHH BCeX ‘IHCeJl lIpaHHTJH-i OTFr = O,IOI HO Pr = lock). 
3TH nOnpaBKH XOpOmO COrnaCytOTCH C paHee BbtHHCBeHHbIMH HTOBHbIMHO 3HaBeHHRMH HJIH 
Pr > 0,l. TaKme OnpeHeneHo BJIMHHHe nJIaBysecTH Ha cTa6HBbHOcTb norpaHHsHoro CJIOFI. 


